Chapter 10

The Garden City: Case Studies of Sustainable Development in Practice

In this chapter, we give examples of how the garden city concept, updated to take into account ecological considerations and aspects of the new urbanism, can be adapted to most urban planning situations. We examine a garden city proposed for development adjacent to Davis, California, and two additional projects inspired by Village Homes—Prairie Crossing near Chicago and Civano in Tucson, Arizona. We also describe Haymount in Caroline County, Virginia, and Coffee Creek Center in Chesterton, Indiana. Finally, we discuss how the garden city concept is and could further be applied in the redevelopment of existing urban areas. In every case, the basic objective is to avoid piecemeal planning or planning by default and to plan at a large enough scale to produce a complete community.

Designation of garden cities is a formidable planning task in itself, particularly where they include or are adjacent to existing development. Garden cities cannot be laid out arbitrarily because part of the goal is to make new development complement existing development and to take advantage of whatever potential the existing development has for incorporation into a community and a comprehensive regional plan. Planners must try to make sense out of existing development and maximize its potential through careful designation of suitable size and boundaries for the ensured success of the garden city or garden village.

New Garden Cities

The process of getting governmental approvals and financing for a new garden city incorporating principles of sustainability is extremely difficult. We have identified three such efforts that appear to have surmounted the barriers. The fourth, Davisville, still must overcome some political obstacles.
Case Study—Haymount

The Haymount development appears to be one of the best examples of the sustainable garden city concept under construction to date. The developer, John Clark, and the planners, Andres Duany and Elizabeth Plater-Zyberk, began in 1988 by performing a site analysis for a 1,650-acre piece of property in Caroline County, Virginia, to determine where best to concentrate growth and which areas to preserve in farming and open space. Haymount is designed as a complete community with a population of 9,500. The plan provides for retail establishments and services to meet residents’ daily needs, jobs in environmentally sensitive manufacturing firms, schools, civic buildings, and housing for people of various income levels, all within a mixed-use, walkable community connected to the greater region via public transit (light-rail, bus, and commuter van). The development includes other essential features of a sustainable garden city, including recreational amenities such as an outdoor entertainment center, organic farming, habitat protection, green building, and recycling of water and wastes.

This groundbreaking project was spearheaded by a visionary, dedicated, and enthusiastic developer. Clark’s environmental goals for the project included acknowledging nature and accepting environmental responsibility. Among his social goals were respecting and involving residents, providing sites for civic life of the community, and avoiding economic segregation.

The Haymount design process was exemplary. Clark studied the site using geographic information systems (GIS) mapping. All trees sixteen inches in diameter or larger were mapped, along with habitats of 302 animal species, vegetation types, wildlife corridors, and wetlands. The land’s archaeological past was studied. Through this process, areas were identified that could be developed with minimal disruption of the site’s natural ecosystems. Clark was also committed to a thorough and inclusive planning process and held numerous meetings and design workshops, inviting community groups, local church members, and representatives of local and regional government agencies to attend. Clark promoted the idea of a multicultural community and reached out to the area’s residents, who are predominantly African American. As a result, the local communities supported his efforts, and three churches openly backed his project.

Haymount consists of 4,000 residential units for people of various income levels, 500,000 square feet of office and light industrial space, 250,000 square feet of retail space, and a fifty-acre college campus, all organized according to new urbanist principles. Almost 70 percent of the site is being preserved in its natural state, reforested, or maintained as productive organic farmland.

The community incorporates the largest biological wastewater treatment system proposed to date as well as a storm-water management system that employs constructed wetlands and biotechnical methods. Sewage effluent will be run through a series of translucent tanks containing plants, snails, fish, and other organisms. The tanks, along with a constructed wetland that accomplishes the final cleansing, will be housed in a greenhouse. This will serve as both wildlife habitat and a civic park. The facility is being designed to use photovoltaic fuel cells as its energy supply.

Clark initiated a “green builder” program, devising energy and materials codes to encourage and reward builders for constructing resource-efficient housing.

A portion of the site will continue to be farmed, but organic farming will replace the chemical-intensive agriculture that was practiced on the land for the previous forty years. A scheme has been devised to allow an organic farmer to lease a large block of farmland for $1 per year for thirty years. The farm will provide food for restaurants, grocery stores, and a farmers’ market in the town so that Haymount residents, as well as others from the area, will be able to purchase organically grown produce and support local sustainable agriculture.

Because it is located away from the freeway corridor and along a pristine river, Haymount has been criticized and its approvals aggressively challenged by owners of adjacent land for being “the right plan in the wrong place.” Their fear is that the development will attract sprawl and encroach on the surrounding farmland. However, although Haymount may not be located in the best place from a regional perspective, it does represent a vastly superior alternative to the ten-acre “martini farms” for which the area was previously zoned.

Clark was challenged by the county’s Department of Planning and Community Development to propose ways to prevent sprawl in Caroline County from following in Haymount’s wake. His attorney, Dan Slone, developed language for the river corridor that designates certain areas as environmentally sensitive to ensure that improved land use patterns will minimize adverse effects of future developments spurred by Haymount.

It should be noted that innovation costs a lot of money. Particularly costly is the time and effort required to gain approval of innovations such as Haymount’s radical sewage system and narrow streets. It took Clark ten years to get the development through the approval process. Although this project might correctly be criticized for its location, the reason why such an innovative project could be undertaken at all is that the site was not zoned for high-density development and was therefore available at a low price. Clark
was able to convince the landowner to sell the land at its current value and to become a limited partner in the project. The property owner then could sell the land at a low price and still realize considerable profit if the project were approved.

The major investor in Haymount, the W. C. and A. N. Miller Company, was willing to provide the money needed for an extensive planning and approval process, again because of the low cost of the land. The company's executives believed that they could invest several million dollars up front and, should the project fail to get approvals, still sell the improved land under existing zoning and make a profit.

The lesson here is that although Haymount may be in the wrong place, if it were in the right place it would be financially feasible. This will continue to be the general case until sustainable development practices receive more support from local government agencies and lending institutions.

Construction was scheduled to begin in Haymount in the fall of 1999, with a projected twenty-year build-out. It remains to be seen whether this vision will come to fruition, but approvals are in place for the innovative features of the community, including the ecological wastewater treatment facility and community greenhouse—features for which the support of local government is often very difficult to gain. Haymount holds great promise for raising the standard of what can be accomplished in terms of sustainable development in the future.

Case Study—Civano

Civano is an example of a garden city built on the edge of an existing city. It is located thirteen miles from downtown Tucson, Arizona, a city that lacks a strong downtown employment base. Sitting on 1,145 acres, it is planned as a walkable, resource-efficient community with high-density development around a village center, where 50 percent of the housing and 70 percent of the jobs will be located. The plan provides for a build-out of 2,600 residential units, 35 acres of commercial and retail space, more than 200 acres of open space, and a 65-acre environmental technology business park.

It was a local builder who first had the idea of building a "solar village" in Tucson. Understanding that implementing such a project would be impossible without political support, he approached Bruce Babbitt, who was then governor of Arizona. Babbitt was enthusiastic about the idea and took action, allocating oil overcharge funds to help pay for the project and identifying a large parcel of land held in state trust as the potential site. As planning progressed, the concept grew from a solar village to a larger undertak-
funds of as much as $4 million, to be derived from general obligation bonds, were committed toward construction of the community center and park (previously planned for a site adjacent to Civano).

If Civano is a financial success, the city’s $3 million general fund investment will be repaid in six years. The city will also save about $200 per unit annually in avoided costs of roads, potable water, and landfill development. That figure may seem modest, but it is twice the revenue to the city from the primary property tax on a typical $125,000 house. Tucson’s mayor, George Miller, remarked, “Investments in smart growth yield substantial returns.”

The Fannie Mae American Communities Fund has become a major equity investor in the community of Civano. Officials of Fannie Mae believe that Civano represents a new model for environmentally sensitive development, one that can be replicated around the United States as smart growth takes hold.

The developable area of the Civano project occupies 916 acres. It includes a total of 2,700 homes; 1 million square feet of commercial, office, and industrial space; a large town center; smaller neighborhood centers; and community and recreational services. One-third of the acreage will remain as open space containing orchards, parks, walking trails, bicycle paths, and a golf course.

Civano is laid out in four neighborhoods, each consisting of clusters of homes surrounding common open space. Each neighborhood has a neighborhood center at its core. Swimming pools are provided in these centers to reduce the demand for water for individual pools. The site plan of one of the neighborhoods is modeled after Village Homes; others take a new urbanist form. Neighborhoods, in turn, surround the village center. Because the automobile has been declared second in importance to the pedestrian and bicyclist, numerous pedestrian linkages are planned, and a community tram is a future goal.

The project blends resource efficiency and neotraditional design elements, with the goal of reducing energy demand by 75 percent, water use by 65 percent, solid waste by 90 percent, and automobile-generated air pollution by 40 percent. To help achieve these goals, minimum standards require builders to construct homes that use half the energy and potable water of typical structures. A “green builder” program is implemented by educating builders, developers, residents, and the community about sustainable building techniques.

Civano’s buildings will be equipped with high-efficiency insulation and water and solid waste systems. Overhangs will shade windows from the hot summer sun. Indigenous building materials and building designs are flourishing. Builders are also encouraged to keep duct distribution systems inside buildings and to install energy-efficient appliances and solar water-heating systems. All irrigation must be accomplished without the use of potable water—a reclaimed water system is available to all properties, the first such system in a new development in Tucson. Together, these strategies will enable builders to downsize the houses’ heating, cooling, and ventilation systems, and this will save enough money to significantly offset the costs of the efficiency measures.

Civano will be relatively affordable and will cover the entire middle of the Tucson market. Five regional builders are constructing the homes, providing a diversity of housing types. Consumer response to all housing types has been strong.

The project’s manager, John Laswijk, noted that cutting monthly utility costs by $35 to $40 allows residents to pay as much as $5,000 more for the homes without changing their total monthly cost. He observed that this increases equity in the home rather than utility company profits.
Businesses locating in Civano are expected to create one job for every two homes. A sixty-five-acre environmental technology business park is already home to a manufacturer of photovoltaic panels. The landscape firm that salvaged native plants from the construction site has opened a commercial nursery and set up a center to teach the public about desert vegetation.

Civano’s grand opening took place in April 1999, with Arizona’s governor, Jane Dee Hull, hailing the development as the “poster child for better planning.” As of this writing, the first homes were under construction in Civano, with 200 scheduled to be completed by the end of 1999. Construction was complete on the first neighborhood center, where 20,000 square feet of retail space has been preleased for such uses as a café, a gallery, a print shop, and office space. The entire development is expected to be completed by 2009.

CASE STUDY—COFFEE CREEK CENTER

Coffee Creek Center is planned as a sustainable garden city and serves as an extension to the town of Chesterton, Indiana, a community with a population of 10,000. The development’s 640-acre master plan calls for a pedestrian-oriented community made up of several mixed-use neighborhoods and

a “main street” commercial area, 185 acres of restored natural habitat, and about 230 acres of parks and greens. A total of about 1,350 residential units and 3 million square feet of commercial, office, and retail space is planned. Some light industrial uses may also be incorporated.

In 1981, the town of Chesterton annexed the site to help shape the path of future development. The property was acquired in 1995 by the current developer, the Lake Erie Land Company. The company hired visionary architect William McDonough—named a “hero of the planet” by Time magazine—to set forth the project’s environmental planning and building principles. These include minimizing the use of nonrenewable resources, reusing and recycling materials, and using sustainably harvested materials wherever practical. Buildings are to be oriented to take advantage of the sun and wind, and photovoltaic electric generation and other advanced energy systems are planned. State-of-the-art communication and data systems are also to be incorporated.
Water is to be treated as a resource, not a waste product. All storm water will eventually be absorbed using techniques such as rooftop retention, "green" roofs (roofs that have plantings on them), swales planted with native water-loving vegetation, dry wells, cisterns, continuous tree-planting trenches, wetlands, and perforated pipes. Ongoing testing has been carried out to determine the effectiveness of each. This has led to installation of a "leaky pipe" system, which allows runoff water that falls on the built portion of the development to be funneled through a series of pipes with holes in them, allowing the water to leak out slowly. There are four series of pipes, allowing water that overflows the first to run into the next, one foot lower in elevation. The capacity of this system far exceeds the output of a 100-year storm event. Water passing through it is cleansed of toxins before it reaches the stream, and the stream is kept at more constant levels, preventing erosion along its banks.

The sewage system will remove solids, and effluent will flow through constructed wetlands like those in the city of Arcata, California, described in chapter 6. Indoor biological treatment systems may also be used.

The master plan provides for new and traditional neighborhoods located on either side of a central open space and creek, with a path system connecting common areas throughout the site. One of the neighborhoods will serve as a town center with a variety of shops, offices, and medium-density housing for "in-town" living. Immediately accessible to the exit from the Indiana Toll Road, the town center will focus on a regional customer base.

Several mixed-use residential neighborhoods will provide housing for people of a variety of income levels on narrow, tree-lined streets dotted with neighborhood parks. Neighborhood centers will provide a convenience store and other services within walking distance of the residents.

An advanced transportation system has been planned to provide door-to-door service. During off-peak hours, the system will deliver packages such as groceries and dry cleaning so that people can walk to and from their destinations without being burdened.

Landscaping is planned as a rich, attractive garden of native plants, wildflowers, and trees to minimize the need to mow, fertilize, and irrigate. Decorative yards will be minimized in favor of functional courtyards, parks, and shared outdoor space.

This project is still in the very early stages of development. The creek and the areas surrounding it are currently being restored, and three and one-half miles of a nine-mile trail system running through an area of prairie restoration are now in place. A pavilion, constructed largely by students of a nearby vocational school, has been completed using native Indiana limestone and sustainably harvested wood. Plans for three of the four development phases have been approved, and 165 miles of fiber-optic cable have been installed with the infrastructure on the site, ensuring that Coffee Creek Center's residents and businesses will enjoy the advantages of the latest technology.

City approvals were obtained in two years despite lawsuits by, ironically, an environmental group. The secret of success was a supportive town council and the legal ability in Indiana to zone for a planned unit development. This allowed the project to be approved as a whole rather than having to comply with individual city ordinances disallowing such elements as narrow streets, mixed uses, "granny flats" above garages, and shared parking. Modifications to the conventional code related to parking have in themselves saved more than forty acres in Coffee Creek Center's first phase. This land has been dedicated to a village green with substantial outdoor civic space.

One planning commission member commented, "If it works, it's great. If it doesn't, where's the harm? The alternative is more sprawl." We believe that Coffee Creek Center represents a laudable alternative to piecemeal planning. The project ensures that new growth in the city will be planned and built as an integrated set of sustainable neighborhoods.

Case Study—Davisville

Davisville is a garden city proposed for development on the other side of an interstate highway from the bulk of the city of Davis and the University of California property. Its location allows Davisville to stand alone, separated from the rest of Davis by the highway, preserved farmlands, and a creek channel. However, the community has the unique benefit of being physically closer to downtown Davis and the university campus than any existing areas of the city. Thus, residents of this garden city will be able to reach the campus, downtown Davis, and the regional rail station through bicycle and pedestrian undercrossings.

The Davis City Council resolved in 1988, when Michael was mayor, that once the city's population reached its desired size—approximately 76,000—new growth should be located elsewhere, in what would eventually become a new city. Davis has now reached that size. Davisville has the advantage of providing housing and services for the growing University of California campus without forcing the city of Davis to grow beyond its desired population level.

Davisville is envisioned as a complete community that will combine the charming and nostalgic characteristics of new urbanist planning with the environmentally friendly concepts embodied in sustainable design. The site occupies 937 acres and will include a mixture of uses to provide a full range
The proposed garden city of Davisville, California, will be very compact in order to conserve agricultural land.

of jobs, housing, retail services, entertainment facilities, and schools. The community is designed to reduce automobile use by means of twenty-six acres of greenbelts running through the development to connect destinations and make them easily accessible by biking and walking. It will be compact enough to be served by a bus system with transit stops within easy walking distance.

Davisville's 1,800 single-family homes and 800 apartments will be grouped in a series of neighborhoods modeled after Village Homes. All residential units, the schools, and the buildings in the town center will be oriented for solar access and natural cooling. Buildings and landscaping will, where needed, double as windbreaks and sound breaks. Food-producing trees, shrubs, vines, and gardens will be used instead of ornamental landscaping, and orchards and vineyards will be scattered throughout the project.

The town center will have a child-care center, a fire station, an athletic club, retail and office space with apartments above it, and a village green. An eighty-eight-acre business park will be located at the northern edge. Natural drainage will be used in the commercial as well as the residential areas. Parking for the business park will be provided in a walnut orchard. The community's sewage wastewater will be recycled and will serve as a source of nutrients for the landscape and for agricultural production.

Well more than one-third of the site will be dedicated to open space. A seventy-eight-acre grove of oak woodlands will be preserved. To preserve the view of these woodlands from the freeway and make a distinct border between Davis and Davisville, more than 100 acres of adjacent farmland will be dedicated to permanent cultivation. In addition, a ten-acre forest will form a visual buffer from the highway and other development on the far side of the site.

A historic ranch house and auxiliary structures, many dating back to the 1800s, will be preserved in a museum of early California agriculture. A seventy-six-acre wildlife preserve will be restored along the creek.

Davisville provides a model of what a community can do when it has reached its desired maximum size. If a town sets a growth limit and it still appears that there are economic reasons for future growth and if the region can accommodate growth, the question should not be whether to allow the town to grow beyond the optimum size but whether to establish a new garden city or garden village in an ecologically sound way, developing a separate community next to the existing one or a short distance away. Buffered from the existing city of Davis, Davisville will be just such a new town, one that can accommodate the growth pressures created by the university. We believe that this is a better alternative than continuing the current peripheral development, which has been accommodating population growth but which seems to be undermining the city's former strong sense of identity and pride.

The New Garden Village Neighborhood

Ideally, a new garden village should be planned as part of a garden city. However, in areas where master planning of this sort has not occurred, the garden village still offers social and ecological benefits.

Case Study—Prairie Crossing

Prairie Crossing, located outside Chicago, serves as an example of a garden village neighborhood. Located in Grayslake, Illinois, it is primarily a residential community consisting of a total of 677 acres, with more than 65 percent of the acreage dedicated to farmland, prairies, and other open space. Commercial development is planned for the future.
The owners of Prairie Holdings Corporation, the developer of Prairie Crossing, are neighbors of the site and longtime residents of the area who passionately wished to preserve the region's historical landscape—a combination of prairies, farmland, wetlands, and trees. A plan for developing more than 1,600 homes had been stopped through court proceedings when Prairie Holdings Corporation stepped in, bought the property, and proposed instead a "conservation community" with 517 homes built in clusters and the rest of the property preserved as open space. None of the eight families involved had any previous experience in development; however, all of them felt sure that a developer could do better-quality development and still make money.

The leaders of the development corporation, Victoria and George Ranney Jr., set forth clear goals for the development. These include protection and enhancement of the environment, economic viability, economic and racial diversity, and a healthy lifestyle that includes a sense of community. In an interview, Victoria Ranney said, "What we wanted to do is make a conservation community that would allow people to live on the land in ways that enhance their lives and the land itself."

The development was sited around existing hedgerows, wetlands, and other terrain. The housing stock consists entirely of single-family homes organized in four neighborhoods: a neotraditional cluster of homes with a market square and a village green; prairie homes clustered in groups of eight with views of open prairie; meadow homes with landscaped common areas overlooking marshes, lakes, or fields; and field homes that border farm fields or pastures viewed through hedgerows.

In 1998, housing prices at Prairie Crossing ranged from $194,000 to $409,000. The homes, which can be chosen from a selection of sixteen different styles, are very well insulated and feature energy-efficient appliances and lighting. These features have reduced energy consumption by 50 percent compared with other homes in the area. Built-in cabinets provide bins for recycling. Low-flush toilets and faucet aerators cut water use. Even with up-to-date amenities, the homes retain the historic style of Midwest homesteads.

New residents are educated about the merits of landscaping with native species rather than the typical lawn, and about 60 percent of them now dedicate at least a portion of their yard to natives. A monthly newsletter, a handbook, and seminars help homeowners identify native species and manage their plantings.

A historic barn, a schoolhouse, and a farmhouse have been preserved. The barn serves as a community center, and the schoolhouse is used for the lower grades of a charter elementary school. The guiding principles for Prairie Crossing state, "The community buildings—an historic barn, a schoolhouse and a farmhouse—remind us that others have lived on this land before, and that others, to whom we have responsibility, will live here after us."

A train stop adjacent to the site provides service to the downtown area and the airport. A compact retail, office, and residential area is planned for development around the rail stop, according to developer Victoria Ranney.
balance of the 150 acres of farmland is leased to a farmer, who grows corn and soybeans; this land will eventually be converted to organic production. The Conservation Fund, based in Arlington, Virginia, holds an easement that will preserve the 150 acres as open land in perpetuity.

Additional open space, a total of 310 acres, is used for reconstructed prairie, hedgerows, and trails for walking, bicycling, and horseback riding. A number of animal species are now in residence, including egrets, herons, chorus frogs, butterflies, geese, and other wildlife.

Since the first house was sold in December 1994, 132 families have moved into Prairie Crossing, and construction is under way on another thirty-five lots. One-half percent of the proceeds from each home sale goes to support the Liberty Prairie Foundation for environmental education and stewardship programs.

Residents of Prairie Crossing have developed a strong sense of community, probably because the opportunities to interact are numerous. Neighbors encounter one another while picking up food at the community-supported garden, on the trails, and at the playing fields and the barn—the site of dances, potluck suppers, meetings, wedding receptions, concerts, and the like.

The developers of Prairie Crossing have proven, as have we in Village Homes, that it is possible to make money while designing with nature for people. The project is on track to make its projected 6 to 8 percent profit on the $100 million development cost.

The Garden City in Urban Revitalization

In addition to addressing new development, the concept of garden cities offers existing communities a planning tool to facilitate urban remodeling. First steps have been taken that make the path to creating garden cities through urban revitalization seem achievable.

The Miami-based architectural firm of Dover, Kohl & Partners has held workshops with the residents of numerous neighborhoods in need of revitalization to develop plans to make them more walkable and more enjoyable places to live. They often use computer simulation so that participants can see what their plan will look like when it is built. Generally, these workshops are initiated and funded by local governments.

A recent Dover-Kohl project involved the transformation of an old mall located in a declining inner suburban ring of Chattanooga, Tennessee, into a town center. The project was initiated by the city. The city staff raised money by convincing owners of businesses in and around the dying mall to
cover 80 percent of the cost of the plan to revitalize the mall. They then hired Dover-Kohl and transportation engineer Walter Kulash as the design team.

The design team engaged 300 people, including nearby residents and business owners, in the design process. One hundred fifty community members did the core of the work, breaking into groups to create separate plans for the area. These were evaluated by the rest of the participants and combined to form a composite draft plan. The plan that the group came up with is a highly innovative one that will, over time, transform the mall into a town center.

Initially, the mall’s owners were not particularly excited about the process, but when they saw the vision and enthusiasm of nearby residents and businesses, they “got hooked.” The plan, backed by the mall’s owners, the city, residents, and other businesses in the area, calls for turning the mall inside out. A new road will cut the existing building in half, embedding it in a street grid with new office, retail, and residential construction. The mall’s exterior will be refaced with new outward-facing storefronts. Much of the existing fifty acres of surface parking will become parks, housing, civic buildings, and a town square. A hotel is also proposed.

Victor Dover of Dover-Kohl said that he believes it is critical that local governments take the initiative on such projects: “With a variety of property owners, the only common manager of the whole process is the community, the city. That’s why the city is involved in the planning, because no one else is responsible for the big picture.”

The Dover-Kohl process in Chattanooga could easily be replicated by other local governments to facilitate further remodeling of urban areas into garden cities or garden villages. An important component of such efforts would be to educate citizen design participants about additional concepts that could be incorporated in their plans, such as community gardens and solar water heaters, as was done in the Civano new garden city project. The American Institute of Architects, based in Washington, D.C., published a workbook in 1996 that could help. The Environmental Design Charrette Workbook gives guidance on how to address energy efficiency, building technology, environmental approaches to landscaping, waste prevention, and
resource reclamation, as well as planning and cultural issues, through the charrette process (an intense workshop in which all the stakeholders gather to complete a plan within a concentrated period of time).

The case studies documented in this chapter illustrate that the transition to more sustainable development is within our reach. We must appreciate the efforts of those developers, builders, private and public planners and architects, engineers, financiers, local government leaders and their staffs, and others who have made these projects possible. The key to future success lies in our ability to enlighten the vast majority whose professional efforts are still contributing to piecemeal planning, cookie-cutter design, and urban sprawl.

Local elected officials and planners must recognize an environmentally sound development when they see one and be willing to be flexible and innovative in supporting it. They must be willing to be proactive in planning to ensure that new development is more sustainable rather than just responding to piecemeal proposals. Finally, they must take the lead in the redesign of existing communities.

The development industry must also be willing to change. This may be the most difficult task ahead. But given the public response to the forward-looking projects discussed in this book, the industry members who do step forward will reap equal if not greater rewards for their efforts.

We are thankful that the momentum is starting to shift to more ecologically sound development. The health and sustainability of the earth as a whole and our individual local communities will depend on this momentum, in a chain reaction, coming fully into blossom. Sustainable community building must not be the rarity but rather business as usual.
Designing Sustainable Communities

Learning from Village Homes

Judy Corbett and Michael Corbett

Foreword by Robert L. Thayer

ISLAND PRESS
Washington, D.C. ♦ Covelo, California